G EGT5E Rhapsody

IBM® Rational® Rhapsody®

‘ Oy |

IBM Rational Rhapsody Reference Workflow Guide

Version 1.11

License Agreement

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor translated into
any human or computer language, in any form or by any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of the copyright owner, BTC Embedded
Systems AG.

The information in this publication is subject to change without notice, and BTC Embedded Systems AG
assumes no responsibility for any errors which may appear herein. No warranties, either expressed or

implied, are made regarding IBM Rational Rhapsody software including documentation and its fitness for
any particular purpose.

Trademarks

IBM® Rational® Rhapsody®, IBM® Rational® Rhapsody® Automatic Test Generation Add On, and IBM®
Rational® Rhapsody® TestConductor Add On are registered trademarks of IBM Corporation.

All other product or company names mentioned herein may be trademarks or registered trademarks of their
respective owners.

© Copyright 2000-2017 BTC Embedded Systems AG. All rights reserved.

Table of Contents

I [N o Yo [T i o o TP 4
2 Application Of thiS DOCUMENTuuuiiiiie e e e e eeeeees 6
3 IBM Rational Rhapsody Reference WOrkflowcccccuvimiiiiiiiiiiiiiiiiiiiiiiiies 7
3.1 General CONSIAEIALIONSuuuuuuuuuuuunriiiniueiueeiieaaar bbb nbneabnansaanaeannnaes 7
3.2 Tool Qualification Requirements for IBM Rational Rhapsodyccccccuuueeee 8
3.2.11S0O 26262: Tool Confidence Level and Tool Qualification.............cc.......... 9
3.2.2 IEC 61508 Edition 2.0: Tool Classification and Tool Qualification 12
3.2.3 IEC 62304 Edition 1.0: Tool Qualificationcccevveiviuiiiiieeeeeeeeeiiiinnnn 13
3.2.4 EN 50128: Tool QUAlIfiCatioNccevvviiiiiiiiiiiiiiiiiiiieeeececeeeeeeeeeeee e 13

3.3 Variation of the IBM Rational Rhapsody Reference Workflow 13
4 1BM Rational Rhapsody Reference Workflow Activities in more Detail 15
4.1 General CoNSIAErAtIONSccooeeeeee e 15
4.2 Requirements Traceability ..o 16
G 1Y/ T To L1 1 T P 18
4.4 Modeling Guidelines and Guideline Checking.............cccoooeieii, 18
4.5 Model VErIfICAION ...cccoeieeeeeee e 18
4.5.1 Model Simulation (MiL SIMUIation).............uuuuuueimiiiiiiiiiiiiiii. 18
4.5.2 Requirements Based TeSHNG.......uuuuuuuurriiiiiiiiiiiiiiiiiiiiiieiiiieiiiibieeeeiieeeeeeaees 20
4.5.3 ReqUIremMentS COVEIAQEuuuuuieieeeeeeieeeiiiiee e e e e e e et e e e e e e e e e e e e e 22
Y oY =] M OT0) V=T = Vo [N 22

4.6 Code Generation and IBM Rational Rhapsody Frameworkscccccvuvenn.. 23
4.7 Coding Guidelines and Guideline Checking...........coooooiiiiiii 26
4.8 Code Verification (SiL and PiL Verification)cccoooeeiiiiiiiiiiiiieeeeeeeeen, 26
4.8.1 Back-t0-Back TeSHNG.......ccovuiiiiiii e e 26
I O To [O 0 YT =T RN 28

5 Mapping Reference Workflow Activities to Safety Standards 30
B5.LISO 26262.....ccceeiiiieeiee ettt e e e e e e e aaaae s 30
I | O G 1 01 34
B5.BTEC 82304 ...ttt e e e e e e e e aaaaas 35

S.AENDSOL28 eanan 39

1 Introduction

This document focuses on the model-based development (MBD) with IBM Rational
Rhapsody in safety-related projects. Model-based development is widely accepted as a
proven method to cope with the rapidly growing complexity of developing systems and
software. MBD can improve delivery of products with higher quality by also incorporating
complementary model-based testing (MBT) methods. MBD includes -- but is not limited to
-- modeling, simulation, traceability information, automatic code generation, model testing,
model-based code testing, model coverage and code coverage measurement, and report
generation.

When using MBD and MBT for developing safety-related software additional quality
objectives have to be met in order to produce and deliver “safe” systems. The mentioned
additional quality objectives essentially depend on:

e a specific industrial domain where the product under development shall be

deployed,

e an appropriate safety standard that must be applied for a particular domain.
The scope of this document covers software that is developed according to IEC 61508 (1),
IEC 62304 (9), EN 50128 (10) or ISO 26262 (2). ISO 26262 was released in 2011 and is
becoming a commonly used safety standard in the Automotive industry for passenger
cars. Although ISO 26262 is mainly concerned with functional safety of
Electrical/Electronic systems, it provides a framework within which safety-related systems
based on other technologies can be considered. IEC 61508 Edition 2.0 was published in
2010 and is a commonly used standard for the development of electrical, electronic,
programmable electronic safety-related systems. IEC 62304 was released in 2006 for the
medical industry. An updated version of EN 50128 was published in 2012 and is a
commonly used standard for the development of Software for Railway Control and
Protection Systems. Such standards describe proven processes and methods for the
development of safety-related systems, provide guidelines and recommendations when
customizing process and methods to a specific customer process, describe how tools can
help develop and testing of software, and what it means to qualify tools for their use that
fulfills the additional requirements regarding functional safety. Although the safety
standards show many similarities in general, they do differ across the detailed aspects
they discuss. In particular they define different approaches to classify the product under
development in certain criticality classes. For instance, SIL! levels 1 — 4 are used in IEC
61508 and IEC 62304, while it is named ASIL? levels A - D in ISO 26262. It mainly
depends on such classifications to derive the concrete additional quality objectives that
have to be met in order to produce and deliver “safe” systems. The quality objectives to be
met become more demanding the stronger the criticality classification of the software and
also applies for the qualification of tools that are used.

While the above mentioned safety standards cover all aspects of planning, development,
release, and maintenance of safety-related products across life cycle phases, this

1 Safety Integrity Level
2 Automotive Safety Integrity Level

document focuses on the UML/SysML model-based development and testing of safety-
related software with IBM Rational Rhapsody including automatic code generation and
IBM Rational Rhapsody TestConductor Add On (3). To discuss the requirements, available
methods, solutions, and tools we use a so-called IBM Rational Rhapsody Reference
Workflow that is described in detail in section 3. The document IBM Rational Rhapsody
TestConductor Add On Reference Workflow Guide (4) describes in more detail the testing
aspects of the workflow.

In section 2 the application of this document for the development and testing of safety-
related software is described. Section 3 describes in detail the mentioned IBM Rational
Rhapsody Reference Workflow. Section 4 makes a walk-through the activities of the IBM
Rational Rhapsody Reference Workflow, from modeling to code generation to testing.
Section 5 provides a mapping of the workflow activities to IEC 61508, IEC 62304, EN
50128 and ISO 26262.

Besides the information in this document users can find more information about IBM
Rational Automotive and Medical solutions, IBM Rational Method Composer for process
definition and management including ISO 26262 and IEC 62304 process templates under:

“IBM Rational solutions for Medical"

“IBM Rational solutions for Automotive”

“IBM Rational Method Composer”

http://www.ibm.com/software/awdtools/rmc/
http://www.ibm.com/software/rational/solutions/electronics/medical/
http://www-01.ibm.com/software/rational/solutions/automotive/
http://www-01.ibm.com/software/rational/solutions/automotive/

2 Application of this Document

This document provides a reference workflow when using IBM Rational Rhapsody for the
development of safety-related software. The IBM Rational Rhapsody Reference Workflow
describes a set of development and testing activities accompanied by some guidelines and
recommendations. Users shall consider this reference workflow when documenting how
they implement the different activities and methods described here in their project specific
process. In particular they shall asses where and how their specific process deviates from
the IBM Rational Rhapsody Reference Workflow. It is mandatory to justify and document
any deviations, and how it is implemented in the customer process.

Section 5 contains a set of tables providing mappings from the IBM Rational Rhapsody
Reference Workflow to the recommended methods in ISO 26262-6, IEC 61508, EN 50128
and IEC 62304.

http://www-01.ibm.com/software/rational/solutions/automotive/

3 IBM Rational Rhapsody Reference Workflow

3.1 General Considerations

The IBM Rational Rhapsody Reference Workflow describes an approach for model-based
development including automatic code generation and model-based testing. Figure 1
shows the major activities in this reference workflow. The upper part of the workflow
describes activities to design and implement the software. The lower part of the workflow
describes activities to validate and verify the software. The approach addresses design
and implementation together with appropriate test and verification:

Textual requirements guide the development of a formal UML/SysML model, which
then is translated to code using code generation. Both refinement steps are
accompanied with appropriate guidelines and checks.

The refinement step from textual requirements to a model ready for code generation
is verified by performing systematic requirements based testing on the model level
leveraging model simulation using IBM Rational Rhapsody’s animation, also called
Model in the Loop (MiL) testing. The generated code, either automatic or manual or
a mixture of both, can be verified on a host computer by executing the same set of
test cases used during MiL, but without including IBM Rational Rhapsody’s
animation, also called Software in the Loop (SiL) testing, and then performing an
equivalence check of the test results (back-to-back testing) between MiL and SiL.
This can be complemented by executing the set of tests on the target processor,
also called Processor in the Loop (PiL) testing.

Test execution on model and code comes along with structural coverage
measurement to assess the completeness of the tests and to avoid including
unintended functionality. Requirements coverage is measured during execution of
the test cases.

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
1
; Rational Rhapsody
i v
A Code Compile
Modeling generation Link :
Requirements > Model » SITE > Object
code code
i :
| i &
i Requirements - I‘. Back to back testing h
i based testingw. TTl---__
i e "-.._" P T e s
Reaqui a Structural coverage RS el Structural coverage
CqULrEIents coverage measurement o measurement
measurement
(model) (Code)

Figure 1: Activities of the IBM Rational Rhapsody Reference Workflow

The first step in the workflow is to translate given requirements into an executable model
using appropriate modeling guidelines. Model-based tests are then added in order to
ensure that the model indeed correctly captures the requirements. Coverage metrics
(requirements coverage and model coverage) can measure the completeness of the
model-based test suite. Code generation, either automatic or manual or a mixture of both,
is used to generate an implementation from the model. Back-to-back testing between the
model and code constitute the key element for code verification. Running a test suite on
both levels verifies that the model and code show equivalent behavior. Code coverage
metrics are used in order to ensure completeness of the test suite with regard to the
predefined code coverage criteria.

In section (4) we make a walk-through the workflow diagram describing the construction
and verification/validation of the software. Testing of models and software is discussed in
even more detail in (4.5).

3.2 Tool Qualification Requirements for IBM Rational Rhapsody

When tools shall be used for the development and testing of safety-related software it is
mandatory to qualify the tools or individual features of tools. The qualification depends on
the concrete safety standard that is applied, the criticality level of the software under
development, and how much risk is introduced into a process by using a tool or a feature

“The objective of the qualification of software tools is to provide evidence of software tool
suitability for use when developing a safety-related item or element, such that confidence
can be achieved in the correct execution of activities and tasks required by ISO 26262.“
(ISO 26262-8, section 11.1)

When going through the process of tool qualification several risk assessment steps have
to be performed:
1. analyze how a Software Tool or a tool feature is used within a user process (“use
case and tool impact”)
2. analyze if errors and malfunctions of the tool or feature would be detected in such
process (“tool error detection mechanisms”)
3. choose an appropriate tool qualification method depending on (1), (2) and the ASIL
or SIL level respectively.

3.2.11S0O 26262: Tool Confidence Level and Tool Qualification

ISO 26262, part 8, chapter 11, “Confidence in the use of software tools”
e provides criteria to determine the required level of confidence in a software tool.
» provides means for the qualification of a software tool.

Confidence is needed that the software tool effectively achieves the following goals:
= The risk of systematic faults in the developed product due to malfunctions of the
software tool leading to erroneous outputs is minimized.
= The development process is adequate with respect to compliance with ISO 26262 if
activities or tasks required by ISO 26262 rely on the correct functioning of the
software tool used.

To determine the required level of confidence in a software tool used within development
under the conditions mentioned above, the following criteria are evaluated:
= The possibility that the malfunctioning software tool and its corresponding
erroneous output can introduce or fail to detect errors in a safety-related item or
element being developed, and
= The confidence in preventing or detecting such errors in its corresponding output

The Tool Confidence Level (TCL) is based upon

= Impact of tool failure (TI)

= Level of Tool error detection (TD)
Eventually the TCL, when combined with the customer product ASIL, leads to methods for
tool qualification.

ISO 26262 describes the process as shown in Figure 2 below to determine the TCL.

ASIL

Qualification for
TCL3

_.m 'W_I_W_ Qualification for
TCL 2

Tool use case

’m ¥ w No Qualification ‘
required

Tool Tool Tool
Impact Error Confidence Tool Qualification

\ Detection

\ Level ;\
. /

Figure 2: Process for Determining the Tool Confidence Level

Tool Impact = 2: the tool might have an impact on safety
Tool Error Detection = 2 or 3: errors and malfunctions are not detected with
sufficient confidence in a given process

e Tool Confidence Level = 2 or 3: Qualification of a tool or feature is needed

The concrete tool qualification requirements depend on the ASIL level of the customer
product under development.

The required software Tool Confidence Level shall be determined according to the
following table.

Tool Error Detection

TD1 TD2 TD3
Tool T1 TCL1 TCL1 TCL1
Impact T2 TCL1 TCL2 TCL3

Figure 3: Determining the Tool Confidence Level

Examples for tools and functions are:

* simulation

= automatic source code generation
test specification
test execution

Prevention or detection of errors can be accomplished through
e process steps
¢ redundancy in tasks or software tools,
e rationality checks within the software tool itself.

What does this mean for IBM Rational Rhapsody automatic code generation?

Since IBM Rational Rhapsody generated code will be part of the safety-related product it is
clear that there is a Tool Impact on safety (TI=2). If the customer process is defined that it
will prevent and/or detect errors and malfunctions with sufficient confidence then Tool
Error Detection is 1 (TD=1). According to ISO 26262-8 prevention or detection can be
accomplished through process steps, redundancy in tasks or software tools or by
rationality checks within the software tool itself. As an example, TD1 can be chosen for the
IBM Rational Rhapsody code generator functionality in case the produced source code is
systematically verified in accordance with ISO 26262. As another example, usage
guidelines can prevent malfunctions such as the incorrect or ambiguous interpretation of
code constructs by a compiler.

For IBM Rational Rhapsody code generation the Tool Confidence Level can be set to
TCL=1if TD1 can be achieved. The IBM Rational Rhapsody Reference Workflow as
described in this document can be used as a blue print to achieve TCL1. A software tool
classified at TCL1 needs no qualification methods. Hence, IBM Rational Rhapsody code

generation can be used without qualification.
~ ASIL

IBM* Rational® Rhapsody®

i
(]
(
(]
(
N/

_.m _W_ No Qualification
required
Tool fodl Tool
Inpact Error Confidence Tool Qualification
P Detection Lidiel ‘

Figure 4: TCL1 for IBM Rational Rhapsody

ISO 26262 also provides the information that verification can be automated with tools. For
instance the generated code can be verified with respect to the input model by applying
the method of back-to-back testing. IBM Rational Rhapsody TestConductor Add On can
be used to perform automated back-to-back testing in order to verify the generated source
code with respect to the IBM Rational Rhapsody model. For IBM Rational Rhapsody
TestConductor Add On the TCL must be set to TLC3 and qualification for IBM Rational
Rhapsody TestConductor Add On must be performed.

N
Qualification for
TCL 3

Qualification for
TCL 2

w ! w_ No Qualification ‘
required

Tool

Tool Error Tool
Confidence i i
Impact Detection Tool Qualification '

Level

Figure 5: TCL3 for IBM Rational Rhapsody TestConductor Add On

3.2.2 IEC 61508 Edition 2.0: Tool Classification and Tool Qualification

IEC 61508-3:2010 (Edition 2.0) requires that an assessment shall be carried out for offline
support tools in classes T2 and T3 to determine the level of reliance placed on the tools,
and the potential failure mechanisms of the tools that may affect the executable software.
Where such failure mechanisms are identified, appropriate mitigation measures shall be
taken.

IBM Rational Rhapsody and also IBM Rational Rhapsody TestConductor Add On are
offline support tools in the context of IEC 61508 Edition 2.0. Tools in class T3 generate
outputs which can directly or indirectly contribute to the executable code of the safety-
related system. IBM Rational Rhapsody is such an example. Tools in class T2 supports
the test or verification of the design or executable code, where errors in the tool can fail to
reveal defects but cannot directly create errors in the executable software. IBM Rational
Rhapsody TestConductor Add On is a class T2 tool.

For tools in class T2, e.g. test and verification tools, it is recommended to perform a tool
validation as described in IEC 61508-3:2010, paragraph 7.4.4.7, in order to get evidence
that the tool conforms to its specification. When evidence is achieved the tool is qualified
for being used regarding functional safety projects.

For class T3 tools it is also recommended to perform a tool validation unless appropriate
risk mitigation measures are in place. Examples of such mitigation measures include:
avoiding known bugs, restricted use of the tool functionality, using diverse tools for the
same purpose, or checking the tool output. Checking the tool output can be a manual,
interactive process activity or an automated activity as feasible with the T2 test tool IBM
Rational Rhapsody TestConductor Add On.

As a consequence of the discussion above, IBM Rational Rhapsody code generation has
to be classified as a T3 offline support tool. Hence, either appropriate risk mitigation

measures are implemented in the process, or evidence must be created that the tool
conforms to its specification. The IBM Rational Rhapsody Reference Workflow as
described in this document can be used as a blue print to implement a process providing
appropriate risk mitigation measures for IBM Rational Rhapsody code generation. Hence,
IBM Rational Rhapsody code generation can be used without qualification or validation
respectively.

IBM Rational Rhapsody TestConductor Add On is a product to perform automated back-
to-back testing in order to verify the IBM Rational Rhapsody generated source code with
respect to the model. IBM Rational Rhapsody TestConductor Add On is a T2 test tool.
Hence, qualification for IBM Rational Rhapsody TestConductor Add On must be
performed, where validation of the software tool is a suitable method.

3.2.3 IEC 62304 Edition 1.0: Tool Qualification

IEC 62304 provides a framework of life cycle processes for the safe design and
maintenance of medical device software. IEC 62304 does not place specific requirements
on software tools, or on the qualification of tools. However, IEC 62304 advises that IEC
61508 can be looked to as a source of methods, tools and techniques that can be used to
implement the requirements in IEC 62304.

3.2.4 EN 50128: Tool Qualification

The requirements for software tools in EN 50128 as well as the tool qualification scheme
are the same as in IEC 61508 Edition 2.0.

3.3 Variation of the IBM Rational Rhapsody Reference Workflow

Beside the workflow in Figure 1 in practice sometimes the variation of the workflow in
Figure 6 is applied. The difference between the workflow in Figure 1 and Figure 6 is that
there is no explicit verification of the model (no MiL Simulation using IBM Rational
Rhapsody animation) regarding the given requirements.

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody
v

v Code Compile
Modeling generation Link :
Requirements » Model > SEIEE > e
code code
" K M
N Requirements \‘\‘ Back to back testing
. based testing .
- i e -
. - L_—‘“'~-h_) .
N - Structural coverage
Requirements coverage T
measurement
(Code)

Figure 6: Variation of the IBM Rational Rhapsody Reference Workflow without Model Verification

Without explicit model verification, the simplified workflow contains the following activities:

e Creation of a model based on the given requirements. The model is created with
respect to modeling guidelines. However, the model is not simulated using IBM
Rational Rhapsody animation or dynamically tested. There might be multiple
reasons for not performing animation based simulation or dynamic testing of the
model. For instance, the model may contain some target hardware specific parts
(e.g. some libraries only existing for the target hardware) that cannot be simulated
at all on the model level.

e The model is translated into source code, either by applying an automatic code
generator or manual or a mixture of both.

e The source code is compiled for SiL and/or PiL execution.

e Test Cases are created and executed on SiL and PiL level respectively. Back-to-
back testing can be performed regarding SiL and PiL to ensure correct functioning
even with target hardware, drivers, and operating system.

e Requirements coverage and code coverage is measured.

Although this variation of the IBM Rational Rhapsody Reference Workflow does not
contain an explicit verification of the model, the correctness of the model is still verified
indirectly by verifying the output of the automatic code generator on the code level by
running requirement based test cases. The drawback of such an indirect verification on the
code level is the fact that in case of errors the error analysis must be performed on the
code level and cannot be done on the model level directly. After the source of a problem is
identified on the code level, appropriate changes on the model level must be performed
that will eventually correct the problem on the code level. Lifting such a problem resolution
from the code level to the model level is sometimes not trivial and time consuming.
Nevertheless, also with such an indirect verification on the code level the generated code
can be thoroughly tested by performing a complete requirement based test. Code

coverage metrics give evidence that the generated code does not contain untested code
and the generated code is fully tested.

4 IBM Rational Rhapsody Reference Workflow Activities in
more Detail

In this section we describe the IBM Rational Rhapsody Reference Workflow activities
captured in Figure 1 and the variant captured in Figure 6. For each explicitly shown
workflow activity, how these activities can be realized with IBM Rational Rhapsody is
described. The following activities are considered:
e Requirements traceability: This topic is described in detail in section 4.2.
e Modeling: General Modeling with UML and SysML is out of scope of this document.
Section 4.3 points to other sources of information.
e Modeling guidelines and guideline checking: This topic is described in detail in
section 4.4,
e Model verification: This topic is described in detail in section 4.5.
Code generation and IBM Rational Rhapsody frameworks: This topic is described in
detail in section 4.6.
e Caoding guidelines and guideline checking: This topic is described in detail in section
4.7.
e Code verification: This topic is described in detail in section 4.8.

4.1 General Considerations

In order to develop safety-related software according to IEC 61508 Edition 2.0, IEC 62304
Edition 1.0, EN 50128 or ISO 26262 a strict process should be followed. Such processes
demand many planning, construction, and verification activities during the specification,
architectural design, implementation, testing, and release phases. In the subsequent
sections we focus on the activities when doing modeling, code generation and
unit/integration testing with IBM Rational Rhapsody. IBM Rational Rhapsody is likely to be
used for many other activities as well, for instance requirement engineering, system
design, software architectural design, documentation, etc. Guidance for those activities is
beyond of the scope of this document. Guidance and best practices for those other
features and activities are described in the IBM Rational Rhapsody Help under_"IBM
Rational Rhapsody 8.1". More information for using Rhapsody for safety-related
development can be found in the IBM Rational Rhapsody Help under "Getting started:
Designing safety-critical applications with Rational Rhapsody".

Besides the information in this document users can find more information about IBM
Rational Automotive and Medical solutions, IBM Rational Method Composer for process
definition and management including 1SO 26262 and IEC 62304 process templates under:

“IBM Rational solutions for Medical"

“IBM Rational solutions for Automotive”

“IBM Rational Method Composer”

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.developing.doc/topics/rhp_c_dev_safety_critical_apps.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.developing.doc/topics/rhp_c_dev_safety_critical_apps.html
http://www.ibm.com/software/awdtools/rmc/
http://www.ibm.com/software/rational/solutions/electronics/medical/
http://www-01.ibm.com/software/rational/solutions/automotive/
http://www-01.ibm.com/software/rational/solutions/automotive/
http://www-01.ibm.com/software/rational/solutions/automotive/

4.2 Requirements Traceability

Requirements traceability means that requirements can be traced to derived elements like
modeling elements and finally into source code and also to test cases. Requirements
traceability is a key concept that shall ensure that

Each requirement can be traced to one or more derived artifact like model elements
and/or source code and test cases. This shall ensure that all requirements are
considered in subsequent development phases.

Each model artifact, the source code and test case can be traced back to one or
more requirement. This shall ensure that no unintended functionality is developed
for which no requirement exists.

Within IBM Rational Rhapsody, requirements traceability can be realized as follows:

1.

2.

3.

4.

Create or import requirements into IBM Rational Rhapsody: In order to be able to
link requirements to model elements and later to source code and to test cases, the
underlying requirements must exist in the IBM Rational Rhapsody model.
Requirements are usually created and managed outside of a IBM Rational
Rhapsody model, e.g. in requirements management tools like IBM Rational DOORS
or simply in text documents. In order to ensure requirements traceability to IBM
Rational Rhapsody elements and later to source code, these requirements must be
imported into IBM Rational Rhapsody. Importing requirements can either be done
manually or automatically. Manually importing requirements means that
requirements are created directly in IBM Rational Rhapsody, and traceability to the
requirements outside of IBM Rational Rhapsody is realized by specifying a
requirement ID that uniquely identifies one of the requirements. Alternatively,
requirements can also be created and linked automatically by using requirements
importing capabilities of IBM Rational Rhapsody. How to import requirements from
other tools is described in the IBM Rational Rhapsody Help under "Integrating IBM
Rational Rhapsody and Rational DOORS" and "Integrating IBM Rational Rhapsody
Gateway".

After having created requirement elements in IBM Rational Rhapsody, one can link
requirements to model elements (system model, design model, test model, ..) by
using dependencies. Usually, the dependency is added to a model element that
was created due to a certain requirement, and the target of the dependency is that
requirement. Additonally, in order to specify that the dependency is added because
of traceability reasons, usually the stereotype <<trace>> is added to the
dependency.

Traceability from requirements to model elements: In order to verify that all
requirements can be traced to a model element and vice versa, one can use e.g.
the IBM Rational Rhapsody Gateway Add-On. How to use it in order to ensure
complete traceability from requirements to model elements and vice versa is
described in the IBM Rational Rhapsody Help under “Integrating IBM Rational
Rhapsody Gateway”.

Traceability from requirements to source code: in order to ensure traceability from
requirements to source code, IBM Rational Rhapsody provides a code generation
option allowing the generation of requirements as comments into the generated
source code. How to enable and use this code generation option is described in the
IBM Rational Rhapsody Help under ‘“Including requirements as comments in
generated code" and under “Including requirements as comments in statechart
code".

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_c_int_rhp_and_doors.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_c_int_rhp_and_doors.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.integ.reqmgttools.doc/topics/rhp_r_int_vendor_doc_gateway.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_generated_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_generated_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_statechart_code.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_cg_include_reqs_in_statechart_code.html

5. Users can use the requirements as comments in code capability to perform
systematic manual verification if all the generated source code can be traced back
to one or more requirements. The verification if all requirements are indeed
implemented into source code can be verified by performing requirements based
testing together with structural code coverage computation.

6. Traceability from test cases to requirements: the UML Testing Profile (5) provides
an element TestObjective that is essentially a dependency. It allows to link test
cases to requirements (6). TestObjective can also be used to link test cases to
design model elements.

4.3 Modeling

UML and SysML provide many concepts for modeling software architectures, software
designs and also the software behavior. Using these concepts is out of scope this
document. General information about modeling software architectures and software
designs with IBM Rational Rhapsody is described in the IBM Rational Rhapsody Help
under “Designing and modeling”.

4.4 Modeling Guidelines and Guideline Checking

For safety-related projects it is necessary to constrain the usage of available modeling
elements to those elements for which certifiable safety-related code can be generated. In
general IBM Rational Rhapsody provides many modeling elements for which source code
is generated (It is described in IBM Rational Rhapsody Help under “Generating code from
a IBM Rational Rhapsody model”. In some cases the generated source code is not
suitable to be used in safety-related projects, e.g. because the generated code is not
MISRA-C (7) or MISRA-C++ (8) compliant. Thus, if it is necessary that source code can be
generated that complies for instance to MISRA C/C++, such constructs should not be
used. Information about how to ensure that MISRA compliant code can be generated from
IBM Rational Rhapsody models can be found in IBM Rational Rhapsody Help under
‘Enabling the generation of MISRA compliant code”.

In order to verify that no modeling elements are used for which generated source code
would not be compliant to MISRA and other guidelines, the IBM Rational Rhapsody check
model feature can be used. Information about how to use IBM Rational Rhapsody’s check
model feature for such purpose can be found in the IBM Rational Rhapsody Help under
“Checking the model*.

4.5 Model Verification

During model verification, the created IBM Rational Rhapsody model is verified against the
underlying requirements that form the basis of the model. The goal of this activity is to
make sure that the model behaves as it is specified in the underlying requirements.

4.5.1 Model Simulation (MiL Simulation)

Technically, model verification is typically achieved by model simulation using IBM
Rational Rhapsody animation, i.e. MiL Simulation. Model simulation can be done in IBM
Rational Rhapsody by defining a configuration that has instrumentation mode set to
“animation”. An example of such a configuration can be found in Figure 7.

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.nav.doc/topics/c_node_designing_modeling.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.misra.doc/topics/t_misra_intro.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_t_dm_checking_model.html

B £ C_Stopiila

- u#fmponents
1-2¥ StopWatchComp
=10 Configurations
- StopWatchDebug

Configuration : StopWatchDebug in StopWatchComp

| Genesal 'Descriptinn Initializatiu:un_; Settings f__I:hecks: Relations | Tags | Properties

= CMgkages Diectoy: [C\Testi\Ahspoadh7 B\S anple\Coangle] | .| (] Use Defauk
E-ET It . r ;
#-£7 PredefinedTypes (REF) ol L ~
57 PredefinedTypesC (REF) Additional Sources: ™
#-£7 RequirementsPlg E =
&£ StopWatchPkg Standard Headers: [| [I]
&5 SystemPkg Include Path: _ :E
-5 TutorialPk : =
o é%luﬁi.;s MR y Inztrumentation i -
Instrumentation Mode: | Animatior bl
Wiehify

[]*eb Enabling

Tirne Model: (%) Real) Simulated
Statechart Implementation: Bed=able (%) Flat P
Locate K

Figure 7: IBM Rational Rhapsody Configuration with instrumentation mode set to “Animation”. Such
a configuration can be used in order to simulate the model.

When having a configuration that can be used for simulation, one can use IBM Rational
Rhapsody’s simulation and animation capabilities in order to simulate and animated the
model. During simulation, one can stimulate the model with inputs and one can monitor the
reaction of the model to the provided inputs. IBM Rational Rhapsody provides different
simulation views that can be used in order to understand and check the behavior of the
model. For instance, one can use animated statecharts or animated sequence diagrams in
order to verify the model’s behavior, and one can inspect the values of model variables
during simulation. An example of such a simulation run can be seen in Figure 8.

R IBM Rational Rhapsody Developer for C - C_StopWatch.rpy

Flle Edit View Code Layout Tooks Widow Halp
ISR AEZML BiI 9 YEF5E X _\A's'\l:'\ w7 3 R00x 9] g‘.@%méoﬂ?oldﬂg%&;j‘g!
o @ > | %{Slopwuc'fm v | StoghwatchDebug v/ ,\'@IED\E |g€*] G| 3

EEEP O Tt 4o T T | wessang D0z == == AL
r .

Animation E|
PIOB Pyl § B &P

_Etatachart of : Timar _.,ystopWatch[0].itsStopwatch. itsTimer

Entre Model view » | ¥ ¥
= 4 C_StopWatch
= 3 Components
= g StopwatchComp
= [Configurations
+ % stopwatchDebug
= Packages
& [IntarfacePkg
£ PredefnedTypes (REF)
[PredefnedTypesC (REF)
[RequirementsPkg
= £ StopWatchPkg
= (& Classes
E3 Button
E3 Display
% & Stopwatch
= B3 Timer
& (= Atributes y
& (2 Generalizations -

_evReset

L. Running

on

*- J colon @]

1 & show(me, me->min, me->sec, TRUE),

tm(S00) | I
| ‘3"'5‘5"5‘” tm(500) twi(s00)]
off @ iz /] 4 T@cr_hck(mc);

nocolon &
2 show(me, m...

(% show(me, me->min, me->sec, FALSE),

Locate oK

Figure 8: By simulating the model, one can step through the behavior of the model, and one can
inspect values of model variables (e.g. values of attributes) during the simulation run.

Information about how IBM Rational Rhapsody models can be simulated by using
animated configurations can be found in the IBM Rational Rhapsody Help under “Running
animated models"

4.5.2 Requirements Based Testing

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.animation.doc/topics/rhp_c_dm_rning_anm_models.html

Modeling guidelines and Coding guidelines and

"""""""

guidelines checking guidelines checking
Rational Rhapsody
‘:' C:de Compile
Requirements Modeling > Model generation . Source Link . Object
code code
i Back to back tesﬁ.ng\
: .

Reguirements I‘.
. " \
based testingw 1

- 1 \\
Structural coverage 0 TTTo--l Structural :\)Drerage
measurement " measurement

(model) (Code)

Requirements coverage
measurement

Figure 9: Requirements based testing

In the previous section we described that model simulation can be used in order to verify
the correctness of the model. However, the user has to make sure that indeed each
underlying requirement has been tested through model simulation. This can be done e.g.
by systematically performing simulation MiL runs for each requirement as sketched in
Figure 9.

Another alternative is to use the IBM Rational Rhapsody TestConductor Add On. The IBM
Rational Rhapsody TestConductor Add On can be used to systematically test the correct
implementation of the underlying requirements. For that purpose, the IBM Rational
Rhapsody TestConductor Add On allows creating test cases for each requirement. By
automatically executing the created test cases, IBM Rational Rhapsody TestConductor
Add On can check the correctness of the behavior of the model with respect to the given
requirements. The behavior of the test cases can be described by means of different UML
diagrams or code. Additionally, in case of changes in the model all test cases can be
executed automatically in order to perform a complete regression test to check that no
errors were introduced by the changes. Details about how IBM Rational Rhapsody
TestConductor Add On can be used in order to perform requirements based testing of an
IBM Rational Rhapsody UML model is described in "IBM Rational Rhapsody
TestConductor Add On User Guide". Also, document IBM Rational Rhapsody
TestConductor Add On Reference Workflow Guide (4) describes in more detail the testing
aspects of the workflow.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf
http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf

4.5.3 Requirements Coverage
Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
i

| Rational Rhapsody

| ¥

¥ Code Compile

Modeling generation Link :
Requirements > Model > SIRCEE Object
code code

i Requirements ' Back to back testing :
1 - h pL S
i v based testingw. ~~TT7--- — .

= 1
Y. ———

.
Structural coverage
measurement

(model)

.
Requirements coverage
measurement

2
Structural coverage
~ measurement

(Code)

Figure 10: Requirements coverage

In order to make sure that indeed all underlying requirements have been tested properly,
either by manual simulation or by specifying model based test cases with IBM Rational
Rhapsody TestConductor Add On, one needs to keep track which requirements have been
tested and which have not been tested so far (cf. Figure 10). If requirements are tested by
manual simulation, a simple protocol can be used that keeps track of which and when
certain requirements have been tested. If requirements are tested by model based test
cases with IBM Rational Rhapsody TestConductor, one can use for instance predefined
testing reports or testing matrices that are provided by TestConductor Add On in order to
get an overview about which requirements were tested by which test cases. Information
about how this can be achieved with IBM Rational Rhapsody TestConductor Add On is

described in "IBM Rational Rhapsody TestConductor Add On User Guide".

4.5.4 Model Coverage

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf

Modeling guidelines and Coding guidelines and
guidelines checking guidelines checking

| Rational Rhapsody
¥

v Code Compile
Modeling generation Link i
Requirements - Model > Source . Object
code code
! :
i [}
i Requirements I‘. Back to back testing b
i . -
! based testingw_ ph RETURI
! ¥ . VTl
, - 5

2
- Structural coverage

Structural coverage
measurement measurement

(model) (Code)

Requirements coverage
measurement

Figure 11: Model coverage

In section 4.5.3 we described how one can make sure that all underlying requirements are
indeed tested on the developed IBM Rational Rhapsody UML model, either by manual
simulation or by model based test cases. However, in order to make sure that all parts of
the model have been tested properly, one should augment the requirements coverage
information with model coverage information (cf. Figure 11).

In contrast to requirements coverage, model coverage measures which parts of the model
have been executed during simulation or testing. IBM Rational Rhapsody TestConductor
Add On provides capabilities in order to generate a model coverage report after test case
execution. With this capability one can check if indeed all model elements have been
executed by the model based test cases. Information about how to use this capability is
described in "IBM Rational Rhapsody TestConductor Add On User Guide".

4.6 Code Generation and IBM Rational Rhapsody Frameworks

UML and SysML provide many concepts for modeling software architectures, software
designs and also software behavior. With IBM Rational Rhapsody models can be
translated into executable code. Using the behavioral modeling concepts and the
automatic code generator is out of scope this document. General information about
software development with IBM Rational Rhapsody and especially about generating code
automatically from a software design model with IBM Rational Rhapsody is described in
the IBM Rational Rhapsody Help under “Developing”.

The generic code generation scheme of IBM Rational Rhapsody is depicted in Figure 12.
As one can see, IBM Rational Rhapsody generates the application source code for a
certain IBM Rational Rhapsody model. The generated source code itself uses a library
providing an execution framework. This execution framework provides implementations for
certain common functionality like timers, event handling, etc. By using this execution
framework library including its abstraction layer instead of real-time operating system
specific functions, the source code of the generated application is independent of a certain
RTOS. IBM Rational Rhapsody comes along with different implementations of this
execution framework for the various existing target architectures.

http://www-01.ibm.com/support/knowledgecenter/api/content/SSB2MU_8.1.0/com.btc.tcatg.user.doc/pdf/RTC_User_Guide.pdf
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.nav.doc/topics/c_node_developing.html

General information about IBM Rational Rhapsody code generation can be found in the
IBM Rational Rhapsody Help under "Generating code from a IBM Rational Rhapsody
model".

4)

Rhapsody RTOS Adapter

Rhapsody

model - Generated Application

OXF (Object eXecution Framework)

OS Abstraction Layer

RTOS

Figure 12: IBM Rational Rhapsody generated code uses the IBM Rational Rhapsody framework
library

In Figure 13 three different variants of the framework library are listed. The reason why
there are different versions of this framework library is that the different versions serve
different purposes. The standard Object eXecution Framework (OXF) library is used for
standard C and C++ code generation. When using this library, the IBM Rational Rhapsody
model can even be simulated. However, the library is large with lots of different features
that are not needed for safety-related production code. Thus, IBM Rational Rhapsody
provides two alternative libraries called Simplified eXecution Framework (SXF) and
Simplified MicroC eXecution Framework (SMXF).

oxe s lsww
Standard C and C++ Safety critical C++ Safety critical C

framework suitable framework for framework for
for simulation production code production code

Figure 13: Different IBM Rational Rhapsody framework libraries

The SXF library is the safety-related C++ framework library. It's a comprehensive C++
library that is suitable to be used in safety-related production C++ code environments. The

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.cg.doc/topics/rhp_c_dm_code_gen_rhp_model.html

C counterpart of the SXF library is the SMXF library. This is a comprehensive C library that
is suitable to be used in safety-related production C code environments.

In order to be able to generate C++ safety-related production code from a IBM Rational
Rhapsody model, the following setting needs to be defined:

1. The setting “SafetyCriticalForC++Developers” needs to be added to the model.

Setting “SafetyCriticalForC++Developers” also automatically loads the settings
‘MISRAC++” and “SXFC++” to the model. Note, when a new project is created it is
possible to pre-select “SafetyCriticalForC++Developers” as default setting. It adds all three
settings to the new project. This avoids adding the settings manually to an existing project.

-
New Project

Puctooms Fromet Entire Model View ~

In fodder: C:\benp\Prioject | Browse. . J = m

-0 Components
) Object Model Diagrams
Packages
=1L Settings
[£5] MISRAC++ (REF)
i3] SafetyCriticalForC++Developers (REF)
+-[{3) SXFC++ (REF)

: Progect Type: Drefanlt =

Project S ettings: Dafzult M
CodeCentne752Cpp
[ef it

Iy
SHFCes

| oK.] Cancel | | Help

Figure 14: Creating a new model with safety-related settings

In order to be able to generate C safety-related production code from a IBM Rational
Rhapsody model, the following setting need to be defined:

1. The setting “SafetyCriticalForCDevelopers” needs to be added to the model.

Setting “SafetyCriticalForCDevelopers” also automatically loads the setting “MicroC” to the
model. Note, when a new project is created it is possible to pre-select
“SafetyCriticalForCDevelopers” as default setting. It adds both settings to the new project.
This avoids adding the settings manually to an existing project. A precondition is to select
“MicroC” as project type before the setting can be selected.

Information about how settings can be added to a IBM Rational Rhapsody model can be
found in the IBM Rational Rhapsody Help under “Project settings”.
More information about SXF framework and SMXF framework can be found under:

e "Simplified C++ execution framework (SXF)"

e "Simplified C execution framework (SMXF)"

Besides adding the right profiles and/or settings to the model, the code generation
configurations that are used in order to generate code for the model must be attached with
certain stereotypes. Details about which stereotypes must be used in order to use SXF
framework or SMXF framework respectively can also be found in the IBM Rational
Rhapsody SXF and SMXF help.

http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.uml.diagrams.doc/topics/rhp_r_ref_projectsettings.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.frameworks.doc/topics/rhp_c_fw_sxf_framework.html
http://www-01.ibm.com/support/knowledgecenter/SSB2MU_8.1.0/com.ibm.rhp.microc.doc/topics/r_mxf_c.html

In order to be able using the SXF or SMXF for safety-related developments it is needed to
do a systematic qualification of the simplified frameworks. The SXF and SMXF come
equipped with validation suites containing:

e Test cases to verify functional correctness of the SXF/SXMF functionality

e Code coverage report after execution of the requirements based test suite

e Requirements coverage report using ReporterPlus. All framework classes and

operations are traced to requirements

e MISRA compliance statements
By executing the proper validation suite it can be verified that the chosen framework is fit
for its purpose.

4.7 Coding Guidelines and Guideline Checking

For safety-related applications, it is important that the generated code conforms to certain
rules that are important for safety-related applications. For C, the MISRA standard is an
important coding standard. In order to make sure that the IBM Rational Rhapsody
generated code conforms to the MISRA standard, the setting
“SafetyCriticalForCDevelopers” needs to be added to the IBM Rational Rhapsody model.
This setting ensures that the design model can be refined into MISRA C compliant code.

For C++, the MISRAC++ standard is an important coding standard. In order to make sure
that the code IBM Rational Rhapsody generates conforms to the MISRAC++ standard, the
profile “MISRAC++” needs to be added to the IBM Rational Rhapsody model. This profile
ensures that the design model can be refined into MISRA C++ compliant code.

Commercially off the shelf tools are available to automatically verify if MISRA or
MISRAC++ rules are violated in the developed code.

Additionally, please follow the rules described in section 4.4.

4.8 Code Verification (SiL and PiL Verification)

For safety-related applications, it is important that the generated code is thoroughly
verified. It must be verified that the code correctly implements the requirements. An
essential activity in the context of the IBM Rational Rhapsody reference workflow is the
verification of the model against the requirements including model coverage computation.
Since the IBM Rational Rhapsody code generation translates a model into source code it
has to be verified that the translation is correct. Back-to-back testing is the technique used
to demonstrate the equivalence between the model behavior and the code running on the
host (SiL testing) or even on the target hardware (PiL testing). Code coverage metrics give
evidence that the generated code does not contain untested code and the generated code
is fully tested.

4.8.1 Back-to-Back Testing

As described in section 4.6, IBM Rational Rhapsody provides different frameworks and
code generation settings for different purposes. Usually, for simulating the model, an IBM
Rational Rhapsody code generation configuration is used with settings appropriate for
model simulation, among others

e OXF standard framework is used (cf. section 4.6)
e Animation instrumentation is enabled

The final production source code must not contain elements like animation instrumentation
code. Thus, IBM Rational Rhapsody users usually create different code generation
configurations for different purposes. In many cases, one distinguishes three different code
generation settings called MiL, SiL, and PiL (cf. Figure 15).

= [y TPkg_StopWatch

— C\EJYT\C'OI'IE(IY.S SIL
= 1 TPkg_StopWatch_Comp
= Configurations

+-83 «TestingConfiguration» HostConfig

+ 183 «TestngConfiguration» rvlodei:onfg-—’ MIL

= ® «TestingConfiguration» TargetConfig
(>» Dependencies \
+ 27 Hyperlinks PIL
¥ (2 Tags

Figure 15: Different code generation configurations (MiL, SiL, and PiL)

MiL (Model in the loop) is a code generation configuration that is used in order to simulate
the model with animation. The MiL configuration contains settings suitable for simulating
the model. SiL (Software in the loop) is a code generation configuration that is used for
generating source code that shall be compiled and executed on the host system, but does
not contain any instrumentation code. The intention is to generate code that can be
executed and tested on the host system, e.g. by using a cross compiler and an emulator.
PiL (Processor in the loop) is a code generation configuration that is used in order to
generate source code for the target processor.

Now, an important verification step is to check if the code generated by these different
configurations shows equivalent behavior. This is mandatory in order to make sure that
model verification results from simulation runs are preserved when executing the source
code generated for SiL and PiL configurations. If there are significant deviations in the
behavior observed for MiL compared to e.g. SiL it means that the model does not behave
as the source code generated for SiL. If these deviations are not detected, errors might
show up in the final production code although they are not observable during model
simulation.

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
| Rational Rhapsody
i v
v Code Compile
Modeling generation Link ;
Requirements > Model > e > Object
code code

N i
Requirements - ' Back to back testing
= based testing'-,‘_-“‘".“---.____‘

~ -
s ot T T mmaaL -

B R &

-

\\
Structural coverage Structural coverage
measurement : measurement

(model) (Code)

Requirements coverage
measurement

Figure 16: Back-to-back testing

In order to detect such deviations, the behavior of MiL configurations must be compared
with the behavior of SiL and PiL configurations (cf. Figure 16). In order to perform such
verification one can either do a manual testing and comparison or one can use a tool like
IBM Rational Rhapsody TestConductor Add On that can automate back-to-back testing
activities. More information about back-to-back testing with IBM Rational Rhapsody
TestConductor Add On can be found in (6).

4.8.2 Code Coverage

In section 4.5.2 we have described that it is essential to systematically verify the
correctness of the model with respect to the underlying requirements by using model
simulation. Furthermore, in section 4.5.4 we have described that also exhaustive coverage
of the model by using model simulation runs is needed. This provides evidence that all
underlying requirements are correctly implemented by the model, and also that no
unintended functionality is realized in the model without having a requirement for such a
model part.

Modeling guidelines and Coding guidelines and

guidelines checking guidelines checking
; Rational Rhapsody
i v
A Code Compile
. Modeling generation Link i
Requirements » Model v > s
code code

i Regquirements I‘. Back to back testing)

i . -

i - based testingw. —~TTite—

-

i
Structural coverage s———
measurement

(model)

.
Structural coverage
" measurement

(Code)

Requirements coverage
measurement

Figure 17: Code coverage

Now, if we look at the generated source code, an equivalent procedure is needed that
checks if the generated source code does not contain unintended or untested functionality
(cf. Figure 17). In order to do that usually source code coverage tools are applied that
measure which part of the source code are executed during SiL and PiL test runs. Many
tools exist that can compute and report code coverage statistics for code execution runs.
When using IBM Rational Rhapsody TestConductor Add On, code coverage measurement
can be easily combined with the Back-to-back testing approach described in section 4.8.1.
More information about code coverage measurement with IBM Rational Rhapsody
TestConductor Add On can be found in (6).

5 Mapping Reference Workflow Activities to Safety
Standards

5.11S0O 26262

Figure 18 below shows the ISO 262626-6 software development reference process.

6-5 Initiation of product development
at the software level

6-6 Specification <€

6-11 Verification
of software S 4.2 Requirements [__----- > of software safety
requirements T --- traceability T requirements
g rl;’ ‘LII .. .
us P ' il . o
E=) : =
=3 6-10 Softw: =
?F’ 6-7 Software " . .0 vare P
a architectural design | 7 y mtegrah(.m and i
H Y testing
/l ! \;, \Ul IlI
4.3 Modeling\ .
/ e 6-9 Software unit |
i design and s \
! __»| implementation ' =i \ch .
44 Modeling guidelines and = ¢ ‘
guideline checking '

4.6 Code generation 4.8 Code verification
4.7 Coding guidelines and

guideline checking

Figure 18: Overview of 1ISO 26262 software development reference process

Figure 19 below provides an overview about the mapping between the ISO 262626-6

software development reference process phases to the workflow activities of the IBM
Rational Rhapsody Reference Workflow.

Software IS0 26262-6 ASIL ASIL ASIL ASIL Workflow Model Level Code Level
Development A B C D Reference
Subphase
Initiation of Table I - Topics io be + + + + Guidelines for * MISRA C: 2004 guidelines * MISRA C: 2004 guidelines
product covered by modelling modelling and coding |* MISRA C++: 2008 guidelines |+ MISRA C++: 2008 guidelines
development at |and coding guidelines and guideline checking |+ IBM Rational Rhapsody: + IBM Rational Rhapsody:
the software 1a Enforcement of low (Section 4.4, 4.7) Enabling the generation of Simplified C execution
level complexity MISRA compliant code framework (SMXF)
1b Use of language + +* IBM Rational Rhapsody: + IBM Rational Rhapsody:
subsets SafetvCrticalForCDevelopers | Simplified C++ execution
1c Enforcement of strong| + setting framework (SXF)
typing +* IBM Rational Rhapsody: + 3rd party tools for guideline
1d Use of defensive o + + + SafetvCrticalForC++Developers |checking on code level
implemantation setting
techniques « IBM Rational Rhapsody:
le Use of established + + + + Checking the model
design principles
1f Use of umambiguous +
|eraphical representation
1g Use of style guides + ++ ++ +
1h Use of naming
cofventions

Software
Architectural
Design

Table 2 Notations for
software architectural
design

1a Informal notations

1b Semi-formal notations

lc Formal notations

Modelling (Software
architectural design;
Section 4.3}

+ Using IBM Rational Rhapsody
for creating a software
architectural design model

Table 3 - Principles for
software architectural
design

1a Hierarchical Structure
of software components

1b Restricted Size of
software components

lc Restricted Size of
interfaces

1d High cohesion within
each software
component

le Restricted coupling
between software
components

1f Appropriate
scheduling properties

1g Restricted use of
interrupts

Modelling (Software
architectural design;
Section 4.3)

+ IBM Rational Rhapsody
UML/SysML provides all
needed concepts

+ IBM Rational Rhapsody
provides a tool to measure
TUML/SysML model complexity

» IBM Rational Rhapsody
TUML/SysML provides all
needed concepts

= IBM Rational Rhapsody
provide all needed concepts to
generate code maiching the
principles

Table 4 - Mechanisms
\for error detection at
the sofiware
architectural level

la Range checks of mput
and output data

1b Plausibility check

lc Detection of data
errors

1d External monitoring
facility

le Control flow
monitoring

1f Diverse software

design

Table 5 - Mechanisms
\for error handling at
the software
architectural level

1a Static recovery
mechanism

1b Graceful degradation

1c Independent parallel
redundancy

1d Correcting codes for
data

Table 6 - Methods for
the verification of
software architectural
design

1a Walk-through of the
design

1b Inspection of the
design

Requirements
traceability and
requirements coverage
measurement (Section
42,4.5.3)

« IBM Rational Rhapsody
UML/SysML provides all
needed concepts to establish,
report and verify requirements
traceability

« IBM Rational Rhapsody
provides features supporting the
process of verification and
validation incluiding traceability
from requirements to model to
code to test cases

1c Simulation of dynamic
parts of the design

Regquirements-based
testing (Software
architectural design;
Section 4.5.2)

+» IBM Rational Rhapsody MIL
simulation

+* IBM Rational Rhapsody SIL
simulation

1d Prototype generation

1e Formal verification

1f Control flow analysis

1g Data flow analysis

Software Unit
Design and Imple
mentation

Table 7 - Notations for
software unit design
la Natural language

1b Informal notations

1c Semi-formal notations

Modelling (Software
unit; Section 4.6)

+ IBM Rational Rhapsody
software unit implementation
model

1d Formal notations

Table 8 - Design
|principles for sofiware
unit design and
implementation

1a One entry and one
exit point in subprograms
and functions

1b No dynamic objects or
variables, or else online
test during their creation

1c Initialization of
variables

1d No multiple use of
variable names

le Avoid global variables
or else justify their usage

1f Limited use of pointers

1g No implicit type
conversions

1h No hidden data flow
ar control flow

1i No unconditional jumps

1j No recursions

Table 9 - Methods for
the verification of
sofiware unit design
and implementation
1a Walk-through

1b Inspection

Regquirements
traceability and
requirements coverage
measurement (Section
42 45.3)

+ IBM Rational Rhapsody
UML/SysML provides all
needed concepts to establish,
report and verify requirements
traceability

+ IBM Rational Rhapsody
provides features supporting the
process of verification and
validation including traceability
from requirements to model to
code to test cases

lc Semi-formal
verification

Requirements-based
testing (Software unit
design; Section 4.5.2)

+ IBM Rational Rhapsody MIL
and/or SIL simulation

» IBM Rational Rhapsody SIL
simulation

1d Formal verification

le Control flow analyses

1f Data flow analvsis

1g Static code analysis

1h Semantic code
analysis

Software unit
testing

Table 10 - Methods for
sofiware unit festing

1a Requirements-based
test

1b Interface test

Lc Fault injection test

1d Ressource usage test

Requirements-based
testing (Software unit
implementation;
Section 4.5.2)

+ IBM Rational Rhapsody
TestConductor AddOn provides
all needed concepts for test case
specification, execution and test
management

= IBM Rational Rhapsody
TestConductor AddOn supports
SIL and PIL testing

le Back-to-back
comparison test between
model and code, if

applicable

Back-to-back testing
(Section 4.8.1)

+ IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing MIL <->

SIL

» IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing SIL <->

PIL

Table 11 — Methods for
deriving test cases for
sofiware unit testing

1a Analysis of
requirements

1b Generation and
analysis of equivalence
classes

1c Analysis of boundary
values

Requirements-based testing (Software unit implementation; Section 4.3.2)

1d Error guessing

Table 12 — Structural
coverage melrics at the
software unit level

1a Statement coverage

1b Branch coverage

1c MC/DC (Modified
Condition/Decision
Coverage)

Structural coverage
measurement for
model and/or code
(Section 4.5.4,4.8.2)

+* IBM Rational Rhapsody
TestConductor AddOn model
coverage

+ IBM Rational Rhapsody
TestConductor AddOn code
coverage

Software
integration and
testing

Table 13 - Methods for
sofiware infegration
testing

1a Requirements-based
test

1b Interface test

Requirements-based
testing (Software
mtegration; Section
4.5.2)

+ IBM Rational Rhapsody
TestConductor AddOn provides
all needed concepts for test case
specification. execution and test
management

+ IBM Rational Rhapsody
TestConductor AddOn supports
SIL and PIL testing

1c Fault injection test

1d Resource usage test

1e Back-to-back
comparison test between
model and code, if’
applicable

Back-to-back testing
(Section 4.8.1)

+ IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing MIL <->
SIL

+ IBM Rational Rhapsody
TestConductor AddOn supports
back-to-back testing SIL <->
PIL

Table 14- Methods for
deriving test cases for
software integration
festing

1a Analyses of
requirements

1b Generation and
analysis of equivalence
classes

1c Analysis of boundary
valies

Requirements-based testing (Software integration; Section 4.5.2)

1d Error guessing

Table 15 — Structural
coverage metrics at the
sofiware archifectural
level

1a Function coverage

1b Call coverage

Structural coverage
measurement for
model and'or code
(Section 4.5.4, 4.8.2)

+» IBM Rational Rhapsody
TestConductor AddOn model
coverage

+ IBM Rational Rhapsody
TestConductor AddOn code
coverage

Figure 19: ISO 26262 mapping to the Rhapsody Reference Workflow

5.2 |[EC 61508

The mapping between IEC 61508 and the IBM Rational Rhapsody Reference Workflow
will be provided in future versions of this document.

5.3 |IEC 62304

[5.1 Software development planning

Figure 20 below shows the IEC 62304 software development reference process.

5.2 Software

<€
requirements RS
analysis

5.8 Software release

4.2 Requirements
----- traceability

5.7 Software
o]
! &
% 5.3 Software
u
&

system testing
architectural design

=
5.4 Software

§ A
:\ . "
‘.‘\ :‘j r{g})
5.6 Software ?
integration and &
detailed design ‘\“ integration testing
¥ Y
4.3 Modeling
5.5 Software unit 5.5 Software unit
implementation ' verification =
4.4 Modeling guidelines and !
guideline checking !
4.6 Code generation
4.7 Coding guidelines and

4.8 Code verification
guideline checking

Figure 20: Overview of IEC 62304 software development reference process

N
Figure 21 below provides an overview about the mapping between the IEC 62304 software
Rhapsody Reference Workflow.

development reference process phases to the workflow activities of the IBM Rational

Software
Development
Subphase

IEC 62304

Class A

Clas=B

Clas=C

Workflow
Reference

Model Level

Code Level

5.15oftware
Development
Planning

5 1 I Safwars Bevslopment Plan
Tho pilan shal adtshass the dotioning:

a)the PROCESSES ta be usedin the
develapment of the SOFTWARE SYSTEM

b]the DELIWVERABLES (inchudes
documentation] of the ACTIMITIES and TASKS

©] TRACEABILITY between STSTEM
requirements, saftw are requirements,
SOFTWARE SYSTEM test, and RISK COMTROL
measures implemented in softw are;

dl=ofw are cenfiguration and changs
management, including SOUP
COMFIGURATION ITEMS and

lsoftw are problem resclution for handing
problems detected in the SOFTWARE
PRODUCTS,

DELWERAELES and ACTIVITIES st each stage

5. 12 Keep software decefopment
plan apdated

The MANUFACTURER shall update the plan as
development proceeds as appropriate.

& L7 Jofoware develapment glan
refarsnce to SYSTEM design and'
development

a) As inputs For softw are development, SYSTEM
requirements shall be referencedinthe

softw are development plan by the
MANUFACTURER.

b) The MANUFACTURER shall include ar
reference in the softw are development plan
procedures for coardinating the software
development and the design and development
validation necessary to satisfy 4.1,

F. Lo Jofoware develogment
seandards. methods and tacks
slanaing

The MANUFACTURER shallinclude or reference
in the softw are development plarn:

a)standards,

b)methods, snd

clools

azsociated with the development of SOFTWARE
ITEMS of class C

5. L5 Softears integration and'
iategration testing planning

The MANUFACTURER shallinclude or reference
inthe softw are development plan, a planto
integrate the SOFTWARE ITEMS lincluding
SOUP) snd perform testing during integrations

5. 18 Sofeware VERIELATION
planntag The MANLFALTRE shat
icdedie acaaderemas dn the safans
decadipment pian the fafowing
VRIS A T demation:

2] DELIVERABLES requiring YERIFICATIOR;

b)the required VERIFICATION TASKS for each
life cycle ACTRITY:

|

|

e]milestones at which the DELIVERABLES are
VERIFIED: and

d]the scceptance criteria for VERIFICATION of
the DELIVERABLES,

softw are used to support development; and

51 F Softears FEGR MAINGEMENT
planning

The MANLFACTURER shallinclude or reference
inthe software development plan, 2 planta
conduct the ACTVITIES and TASKS of the
software RISK MANAGEMENT PROCESS,
including the management of RISKS relating to

SOUP.

5 18 Bacument planaing

For et idsnitind s orype of
rzcament the foloring information shaitbe
irstadedar referencad

al title, name ar naming convention;

bl purpose:

clintended audience of document; and

dl procedures and responsibilities for

development, review, approval and modification.

B4

E4E4EHES

4

5. 1.5 Software configuratian
faning e sabiae

althe classes, tpes, categories or lists of items
to be controlled;

B3

=

b3

SOV MAnagpament information shat

b the softw are configuration management
ACTIITIES snd TASKS:

oI the organizationls) responzible for performing
softw are configurstion management and

ACTIVITES:

d) their relationship with other organizations,
such as software development or maintenance;

elwhen the items are to be placed under
conliguration contral; and

fiwhen the problem resolution PROCESS is o

be used

5 1 I Supparting fems to be
cantralled

The items to be controlled shallinchude tacls,
items ar semings, used ta develop the MEDICAL
DEVICE SOFT'WARE, which could impact the
MEDICAL DEVICE SOFTWARE.

F. 1 M Sofoware CONFIGHRATION
STEM cantrol before WERFRCA TN

The MANUFACTURER shall plan to place
COMFIGURATION ITEMS under documented
configuration

management control before they are VERIFIED.

5.2 Software
requirements
analysis

5.2 } Define and document softwars
requirements fram SYSTEM
requirements

Far each SOFTWARE SYSTEM of the MEDICAL
DEVICE. the MANUFACTURER shall define and
document SOFTWARE SY'STEM requirements
from the SYSTEM level requirements.

F5.2.F Jaftware regquirements
canfeni Ay amproonata fo ihe
AEDCAL DELEE SOFTARE. the
MR TSGR shalt fnciadta i ihe
EET T PEREs Y

al funational and capabiliy requirements;

bl SOFTWARE SvSTEM inputs and outpurs;

clinterfaces hetween the SOFTWARE SYSTEM
and other SYSTEMS;

dJ saftw are-driven alams, warmings, and
operator messages:

el SECURITY requirements;

flusability enginesring requirements that ars
sensitive o human erors and waining:

gl data definition and database requirements;

hlinstallation and acceptance requirements of
the delivered MEDICAL DEVICE SOFTWARE at
the

il requirements related ta methads of aperation
andmaintenance;

jluser documentation to be developed;

k] user maintenance reguirements; and

1) regulatory requirements.

E

o=

HEdEs

Requirements
[Requirements
traceability; Section

4.21

Uzing IEM Fational Rhapsady
for specifying the softw are
requirements and to establish
traceabiliy

The MANLF AT TUFER shall nehde FISK

5.2 Flnckde FISK LONTROL - 3 k3
o i CONTROL measures implemented in softw are
far
hardw are failures and potential softw are defects
in the requirements as appropriate to the
5. 2 Re-ERL L TE MEDWCAL The MANUFACTURER shall re-EWALUATE the s i s
FEWICF RISK ANAE Y SIS MEDICAL DEWICE RISK AMALYSIS when
software requirements are established and
update it a5 appropriate.
5 25 lpdate SYSTEM reqerements | The MANUFACTURER shall ensure that existing k3 3 k3
requirements, including SvSTEM requirements,
are re-EVALUATED and updated as sppropriate
as aresult of the softw are requirements analysis
ACTIVITY.
5. ZF Ve software requirements | alimplement SrSTEM requirements inchiding % " %
Fhus MR IR TURER shad coanie and thaze relating ta RISK CONTROL
dhcgimant shar vha sofians ragesramands | bl do not contradict one anather; X 3 X
o) are enpreszed in terms that swaid ambiguity; X ® X
of test criteria and performance of tests to x ® x
determine whether the test oriteria have been
met;
el can be uniquelyidentified; and X ® X
fl are traceable to S STEM requirements or k3 3 k3
ather source.
5.3 Sohware 5.7} Fransform safoware The MAMUFACTURER shallransform the - ® x Modelling [Safw are |Using IBM Rational Rhapsody
architectural requirements o an requirements for the MEDICAL DEVICE architectural for creating a softw are
design ARCHFECTLRE SOFTWARE into a documented design: Section 4.3)| architectural design model
ARCHITECTURE that describes the softw are’s
strusture and identifies the SOFTWARE ITEMS.
5 32 Devsitop an ARCAIFFECFHRE The MANUFACTURER shall develop and - 3 k3
For the interfaces of SOFFWARE document an ARCHITECTURE for the interfaces
fTEMS between the SOFTWARE ITEMS and the
companents external to the SOFTWARE ITEMS
[both software and hardw arel, and betwesn the
SOFT/ARE ITEMS.
5.2 F Gpeaife functional and If 2 SOFTWARE ITEM iz identified as SOUP, the -- ® x
performanse reguirements of SOUF | MANUFACTURER shal specify functional and
=m perfarmance requirements for the SOUP item
that are necessany farits intended use.
5. 7. Joeeie SYITEM hardwars If 3 SOF TWARE ITEM iz identified as SOUF, the - i s
and sofeware reqaired by SOUP frem | MANUFACTURER shall specify the SYSTEM
hardw are and softw are necessary to support the
proper opetation of the SOUP itzm.
5 35 ldentifo segregation The MANUFACTURER shall identify the - - k3
aceessany far FISK CONTROL segregation between SOFTWARE ITEMS thatis
ezsential ta RISK CONTROL. and state how to
ensure that the segregation is effective.
5.2 8 Ve safoware althe ARCHITECTURE of the saftware - - x
AR TEL TLRE T implements SYSTEM and softw are requirements
MANEFRE TLARER shall veanily and doceiment |including those relating ta RISK CONTROL:
FETS blthe zoftw are ARCHITECTURE is able to - - s
support interfaces between SOFTWARE ITEMS
and
between SOFTWARE TEMS and hardw are; and
©)the MEDICAL DEVICE ARCHITECTURE - - s
suppons proper operation of any SOUP items.
5.4 Software 5. .} Refine SOFTwdRE The MANUFACTURER shall refine the sofu are - bl i = Modelling +IBM Rational Rhapsody = MISRA C: 2004 guidelines
detailed design | ARCHITES FURE fnta SOFTHARE ARCHITECTURE untilit is represented by [Saftware unit; saftw are unitimplementation [« MISRA C++: 2005
LTS SOFTWARE UMITS, Section 4.5] model = |guidelines
5. 4.2 Bevelog detaded design for The MANUFACTURER shall develop and - - % = Requirements- |BM Rational Rhapzody - IBM Rational Rhapzady:
each SOFTARE VT document a detailed design for each based testing TestConductor AddCn Simplified C execution
SOFTWwAARE UMIT of the SOFTWARE ITEM. [Softw are unit provides all needed concepts | framewark [SMF]
5. 4. 7 Bevelog detafed design for The MANUFACTURER shall develop and - - S design; Section far test casze specification. * [BM Rational Rhapsody:
interfages dooument a detalled design for any interfaces 452] * [erecution and test Simplified C++ execution
between the SOF TWARE UNIT and external Guidelines far management framework [SXF)
components (hardw are or softwarel, as well as modelling and = MISR& C: 2004 guidelines = 3rd party tools for guideline
anyinterfaces between SOF TwWARE UNITS. woding and *MISRA C++: 2008 guidelines | checking on cade level
5. 4. & Venify detadled design =) implements the softw are ARCHITECTURE; - - " guideline checking (- IBM Rational Rhapsody.
The AL TEGER shai won and = =] [Sectiond.4,4.7) |Enabling the generation of
dceamant that the sofinrans dataied demin, MISRA compliant code
«IBM Ration sl Rhapsody
SafetyCriticalF orCDevelopers
setting -
IEM Riational Rhapsody:
SisfetyCriticalF orC++Deuelope
b)is free from contrsdiction with the saftw are s setting
ARCHITECTURE - IBM Riational Rhapsady
5. 5S0FTWARE | 55 }implement sach SOFFWARE The MANUFACTURER shallimplement each E E 3 »Code Generation [+ IBM Rational Rhapsadu - IBM Rational Fhapsady
uNIT LT SOFTWARE LMIT. [Section 4.6 UMLISysML provides all UMLISy=ML provides all
implementation 55 2 Fouabiich SOF 7 W aFE LWT The MANUFACTURER shall establish strategies, - E % = Requirements- needed concepts ta establish, | needed concepts
and verification | yemma iom PROCESS methads and prosedures for verifying each based testing report and verlfy requirements |+ IBM Rational Fhapsody
SOFTWARE UMIT. ‘where VERIFICATION is done [Software unit trace-ability and to develop provide all needed concepts
by testing, the test procedures shallbe implementation; source code o generate code matching
EVALUATED for conrectness. Section 4.5.2] +IBM Rational Rhapsody the principles
5. 5.3 SOFTWARE UMT aceeptance | The MANUFACTURER shall establish - E] = - Requirements provides features supporting
criters scceptance criteria for SOF TWARE LINITS prior traceabilty and [the process of verification and
tointegration requirements walidstion including traceability
into |larger SOFTWARE ITEMS a5 sppropriate, coverage from requirements to madel to
and ensure that SOFTWARE UMITS meet measurement code totestcases
[Section 4.2, 4.5.3]
5.5 & Addiional SOFTWARE HMT | a) proper event sequence; - - " - Structural
scceptance crtemds b) data and control flow; - - ® coverage
hefunr prasens i the desian, e c] planned resource allocation; - - " measurement for
MAMNAL TURER shakinchade aotfions’ | d)fault handling (error definition, isolation, and - - ® model andlor code
FOREEITD SERI 3T OIS fa recovery); [Section 4.5.4,
elinitialization of variables; - - i3 4.8.2]
1 self-diagnastios: - - n
g)memory managementt and memary overflows: - - i3
and
h) baundary sonditions. - - x
555 SOF T ARE UWT The MANUFACTURER shall perform the: - ® ®
VERIFICR TION SOFTWARE UMIT WERIFICATION and dacument

the results.

5.6 Software 5 & Vintegrate SOFFRARE IINTS The MANUFACTURER shallintegrate the - E k3 - Code Generation (- IBMRational Rhapsady = IBM Rational Fhapsady
integration and SOFTWARE UNITS in accordance with the [Section 4.6] TestConductor AddOn provide all needed concepts|
integration integration plan - Requirements— provides all needed concepts |tointegrate, compile, link,
testing 5. 6.7 Werify saftware iitegration =) the SOF TWARE UMITS have been ntegrated — b3 % based testing fortest case specification, | andtest code
P MR TURER shalfl conify and into SOFT'W'ARE ITEMS and the SOFTWARE [Saftw are unit exnecution and test = IBM Rational Rhapsady
racondthe fafowing Sspecer ofthe safans | SYSTEM, and implementation; [management TestConductor AddOn
AR 17 AT I Wi bl the hardware items, SOFTWARE ITEMS. and - » ® Section 4.2.2] +IBM Rational Rhapsody supports Ik and PIL testing
bt stan support for manusl operations [e.g.. -Requiemerts | TestConductor AddOn + IBM Piational Phapsady
humanequipment interface, on-line help menus. | traceability and supports back-to-back testing | TestConductor &dd0n
speech recogrition, vaice control] of the requirements MIL <=3 SIL supponts back-to-back
SYSTEM coverage testing SIL <=5 PIL
5.8 F Fest integrated software The MANUFACTURER shalltest the integrated - E x measurement
SOFTWAREITEMS in accordance with the [Sectiond.2.4.5.3]
integration plan and document the results, = Strustural
5 & o lnecgracion testing canteal Far software integration testing, the - E3 B3 coverage
MANUFACTURER shall address whether the measurement for
integrated SOFTWARE ITEM performs as model andior sode
T8 5 Verifa imregration oot The MATIF ACTURER shall EVALUATE the = = = e dsd
procedures integration test procedures for conectness.
5 8.8 Londuct regression fesis ‘When saftware items are integrated, the - E "
MANUFACTURER shall conduct REGRESSION
TESTING appropriate to demonstrate that
defects have notbeen inrodused into
previously integrated
5. & Flntegration test recard &) dacument the test result [pazsitail and a list of - ES X
SOALEALS T MAALFEAC TLARER | ANOMALIES),
shal blretain sufficient records to permit the test to be| - X X
repeated; and
o) identify the tester. - b X
5. 6.8 e softwars gprobiem The MANUFACTURER shall erter AMOMALIES - b s
resalution PROCESS found during softw are integration and
integration
testing into & saftw are problem resolution
5.7 SOFTWARE |5 7 ¥ Escablish teses for software The MANUFACTURER shall establish and - E x *Requirements- +IEM Rational Rhapsady = IBM Riational Rhapsody
SYSTEM testing | requirements perform 2 set of tests, expressed asinput stimuli, based testing TestConductor AddOn TestConductor AddOn
expected outcomes, passifail criteria and [Section4.5.2) provides all nesded concepts | supports softw are system
procedures, for conducting SOFT'WARE -Requirements for test case specification, testing
SWSTEM testing, such that all saftw sre traceahility and execution and test
5 F25e software prablem The MANUFACTURER shall erter AMOMALIES - B " requirements management
resofuifon PROCESS found during softw are system testing into a coverage
software measurement
5. 7.7 Retest after changes a)repeat tests, perform modified tests or perform - E3 X [Section4.2,4.5.3)
fduan chanupas ana madte iy additional tests, a5 appropriate, to verify the
SEFTARE SYSTEN sating. tha eftectiveness of the change in carrecting the
MANFALTLRER shal problem;
b) canduct testing appropriste to demanstrate — ES X
that unintended side effects have notbeen
introduced; and
o) perform relewant RISK MANAGEMENT - E x
ACTMITIES as definedin 7.4.
5. - Wenify SOFTWARE SYSTEM a)the VERIFICATION st stegies and the test - b s
sestng The MAALFACTURER shatt procedures used are appropriate;
st b) SOFTWARE SvSTEM test procedures race - b s
ta softw are requirements;
] all softw are requirements have been tested or - = "
otherwise VERIFIED; and
5 F 5 SOFTWARE SYSTEM rest &) dacument the test result [pazsitail and a list of - b s
reaord contents The MALFACTLRER | ANOMALIES),
shal blretain sufficient records to permit the test to be| - X X
repeated; and
o) identify the tester. - b X
5.6 Software 5.8 Ensare software VERFICA TROV | The MANUFACTURER shall ensure that software - b s
release & gomplens VERIFICATION has been completed and the
results EVALUATED before the softw are is
released
5. &2 Dacument knawn residaal The MANUFACTURER shall document all known - E x
AV S residual AMOMALIES.
5. 8.7 ECRLLATE kngwa residval The MANUFACTURER shall ensure that all - b s
HEF knownresidual AMOMALIES have been
EVALUATED tor
enzure that they do nat contribute ta an
5. & & Bocument refeased The MANUFACTURER shall document the ® E x
WERIINT VERSION of the SOFTWARE PRODUCT thatis
beingreleased.
5. &5 Dacument haw refeased The MANUFACTURER shall document the - E x
software was created procedure and environment used to create the.
released software,
5. &.F Ensure aotivities and tasks are | The MANUFACTURER shall ensure that all - E x
compleis ACTIVITIES and TASKS are complete along with
allthe associated documentation,
5. & F Archive saftware T a)the SOFTWARE PRODUCT and - E x
AN TLIRER sha ancfaios. CONFIGURATION ITEMS; and
determined as the langer of: the life time of the. - E x
device as defined by the MANUFACTURER ar &
time specilied by relevant regulatory
requirements
5. 8.8 Assure repeatabiity of procedures to ensure that the released - H %
softwars relesse SOFTwARE FRODUCT

can be reliably delivered to the point of use
without coruption or unauthorized change.
These

procedures shall address the production and
handling of media cantsining the SOFTWARE
PRODUCT including as appropriate:
~replication,

- medialabelling.

- packaging.

- pratection,

- storage, and

- delivery.

Figure 21: IEC 62304 mapping to the Rhapsody Reference Workflow

5.4 EN 50128

The mapping between EN 50128 and the IBM Rational Rhapsody Reference Workflow will
be provided in future versions of this document.

Appendix A: List of Figures

Figure 1: Activities of the IBM Rational Rhapsody Reference Workflow.............................. 8
Figure 2: Process for Determining the Tool Confidence Level..............cccoevvviiiiiiiiceneeennns 10
Figure 3: Determining the Tool Confidence Level............cooooiiii, 10
Figure 4: TCL1 for IBM Rational RNapS0dycuuuiiiiiiieiiiiiiiiei e e e e 11
Figure 5: TCL3 for IBM Rational Rhapsody TestConductor Add On............ccooeeeeeiiiiennnnnn. 12
Figure 6: Variation of the IBM Rational Rhapsody Reference Workflow without Model

RV 4] o= 11 o o 1P 14
Figure 7: IBM Rational Rhapsody Configuration with instrumentation mode set to
“‘Animation”. Such a configuration can be used in order to simulate the model. 19

Figure 8: By simulating the model, one can step through the behavior of the model, and
one can inspect values of model variables (e.g. values of attributes) during the simulation

(1 0 TP UUPPPTR SRR 20
Figure 9: Requirements based tESHINGoooeeeeieeieeee e 21
Figure 10: REqQUIrEMENTS COVEIAQE.......uuuuuuiieeeeeeeeeeeiiiie e e e e e e e e e eeatte s e e e e e eeeeeaaana e e eeeeeeeennnns 22
Figure 11: MOdel COVEIAGEcoooieieeeeeee e 23
Figure 12: Creating a new model with safety-related settings..............ccceevvvviviiiiiieeeeeeeeennns 25
Figure 13: Different code generation configurations (MiL, SiL, and PiL)cccccoeeeeeenn. 27
Figure 14: Back-t0-Dack tEStINGccovviiiiiiiii e 28
FIgure 15: COAE COVEIAQEcooiiiiie e 29
Figure 16: Overview of ISO 26262 software development reference process................... 30
Figure 17: 1SO 26262 mapping to the Rhapsody Reference Workflow.....................ooe. 33
Figure 18: Overview of IEC 62304 software development reference process 35

Figure 19: IEC 62304 mapping to the Rhapsody Reference Workflow............................. 38

Appendix B: List of References

1. Functional safety of electrical/electronic/programmable electronic safety-related
systems, IEC 61508, Edition 2.0. 2010.

2. Road vehicles — Functional Safety, International Organization for Standardization, ISO
26262. 2011.

3. IBM Rational Rhapsody TestConductor AddOn. [Online]
http://www-01.ibm.com/software/awdtools/IBM Rational Rhapsodyy/.

4. IBM Rational Rhapsody TestConductor Add On Reference Workflow Guide.
5. UML Testing Profile, OMG, June 2011. [Online] http://www.omg.org/spec/UTP/1.1/PDF/.
6. IBM Rational IBM Rational Rhapsody TestConductor Add On User Guide.

7. MISRA-C: 2004 - Guidelines for the use of the C language in critical systems, MIRA
Limited. 2004.

8. MISRA-C++: 2008 - Guidelines for the use of the C++ language in critical systems,
MIRA Limited. 2008.

9. Medical device software — Software life cycle processes, IEC 62304 Edition 1.0, 2006.
10. Railway Applications: Software for Railway Control and Protection Systems, EN

50128,
2011.

